
1

Making Web3 Space Safe for Everyone

Unstable Protocol
Marketplace
Security Assessment

Published on : 27 May. 2024
Version v1.1

COPYRIGHT 2024. KALOS. all rights reservedS



2

Security Report Published by KALOS
v1.1 27 May. 2024

Auditor : Andy Koo, Jinu Lee

Found issues

Severity of Issues Findings Resolved Acknowledged Comment

Critical 1 1 - -

High 1 - 1 -

Medium 2 2 - -

Low 5 3 - 2

Tips 7 5 - 2

COPYRIGHT 2024. KALOS. all rights reserved



3

TABLE OF CONTENTS
TABLE OF CONTENTS

ABOUT US

Executive Summary

OVERVIEW

Protocol overview

Scope

Access Controls

FINDINGS

1. Miscalculation of the user’s collateral ratio in _checkHealth function.

2. The vaults Storage Variable Not Properly Updating Its Entries

3. The Debtor’s Reward Also Needs to Be Updated When Liquidation is Called

4. The nonReentrant modifier needs to be applied

5. Incorrect implementation of transfer in the nUSD.executeFlashloan function

6. Missing validation 1 - StakedEthVault

7. Missing validation 2 - emUSM

8. Missing validation 3 - StakedEthVault

9. Incorrect implementation in UnstableConfigurator

10. Shared rewardManager role across multiple vaults

11. Incoherent Basis Points notation.

12. Borrowed fee calculation doesn't retrospectively reflect borrowApr updates.

13. Front-run to cause a denial of service (DoS) when snUSD is deployed.

14. When the cooldown is adjusted, users are still required to adhere to the previously
established duration.

15. The pause state is not accounted for when withdrawing.

16. isDepegged function only checks for marketRate lower than redemptionRate

DISCLAIMER

Appendix. A

Severity Level

Difficulty Level

Vulnerability Category

COPYRIGHT 2024. KALOS. all rights reserved



4

ABOUT US

Making Web3 Space Safe for Everyone

Pioneering a safer Web3 space since 2018, KALOS proudly won 2nd place in the Paradigm
CTF 2023. As a leader in the global blockchain industry, we unite the finest in Web3
security expertise.

Our team consists of top security researchers with expertise in blockchain/smart contracts
and experience in bounty hunting. Specializing in the audit of mainnets, DeFi protocols,
bridges, and the zkEVM protocol, KALOS has successfully safeguarded billions in crypto
assets.

Supported by grants from the Ethereum Foundation and the Community Fund, we are
dedicated to innovating and enhancing Web3 security, ensuring that our clients' digital
assets are securely protected in the highly volatile and ever-evolving Web3 landscape.

Inquiries: audit@kalos.xyz
Website: https://kalos.xyz

COPYRIGHT 2024. KALOS. all rights reserved

mailto:audit@kalos.xyz
https://kalos.xyz


5

Executive Summary

Purpose of this report

This report was prepared to audit the security of the Unstable Protocol smart contracts.
KALOS conducted the audit focusing on whether the system is soundly implemented
and designed as specified in the published materials, in addition to the safety and
security of the Unstable Protocol. In detail, we have focused on the following

● Project availability issues like Denial of Service.
● Strict access control on storage variables to prevent unauthorized access.
● Function access control measures.
● Safeguards against the freezing and theft of stored assets.
● Yield calculation processes to prevent manipulation or asset theft.
● comprehensive error handling for unhandled exceptions, ensuring protocol

robustness.

Codebase Submitted for the Audit

The code used in this Audit can be found on GitHub
(https://github.com/LSDfi-cafe/unstable-protocol/tree/feature/auditors).

The last commit of the code used for this Audit is
“b7d86906924e67eeaef9e0227df1333eb7ea2083”.

The last commit of the code patched for this Audit is
“61577e2e2135a0ae44a8cced9808a0e6cf50cfa0”.

Audit Timeline

Date Event

2024/05/07 Audit Initiation

2024/05/21 Delivery of v1.0 report.

2024/05/27 Delivery of v1.1 report.

COPYRIGHT 2024. KALOS. all rights reserved



6

Findings

KALOS found 1 Critical, 1 High, 2 medium, and 5 Low severity issues. There are 7 Tips
issues explained that would improve the code’s usability or efficiency upon modification.

Severity Issue Status

Critical Miscalculation of the user’s collateral ratio in _checkHealth
function. (Resolved - v1.1)

Low The vaults Storage Variable Not Properly Updating Its Entries (Resolved - v1.1)

Medium The Debtor’s Reward Also Needs to Be Updated When
Liquidation is Called. (Resolved - v1.1)

Tips The nonReentrant modifier needs to be applied. (Resolved - v1.1)

Low Incorrect implementation of transfer in the
nUSD.executeFlashloan function (Resolved - v1.1)

Tips Missing validation 1 - StakedEthVault (Resolved - v1.1)

Tips Missing validation 2 - emUSM (Resolved - v1.1)

Tips Missing validation 3 - StakedEthVault (Resolved - v1.1)

Low Incorrect implementation in UnstableConfigurator (Resolved - v1.1)

Low Shared rewardManager role across multiple vaults (Commented - v1.1)

Tips Incoherent Basis Points notation. (Resolved - v1.1)

High Borrowed fee calculation doesn't retrospectively reflect
borrowApr updates (Acknowledged - v1.1)

Tips Front-run to cause a denial of service (DoS) when snUSD is
deployed. (Commented - v1.1)

Low When the cooldown is adjusted, users are still required to
adhere to the previously established duration. (Commented - v1.1)

Medium The pause state is not accounted for when withdrawing. (Resolved - v1.1)

Tips isDepegged function only checks for marketRate lower than
redemptionRate (Commented - v1.1)

COPYRIGHT 2024. KALOS. all rights reserved



7

OVERVIEW
Protocol overview

• Staked Eth Vault
The StakedEthVault.sol contract is a vault contract where non-rebasing LST/LRT tokens can
be deposited. The contract accrues a reward proportional to the user’s deposit amount.
The deposited assets can be used as collateral for minting the nUSD token, which is
pegged to 1 USD. The user can borrow the nUSD up to the collateral ratio set on the
UnstableConfigurator.sol contract by the contract owner/admin. There is a liquidation and
rigid redemption function which liquidates or redeems the user’s debts. This contract
utilizes the Oracle contract to calculate the collateral token’s price.

• Oracles
Each token's oracle contract retrieves the price of each non-rebasing LST/LRT to the ETH.
The contract retrieves the market ratio (if possible) and the redemption rate of the
underlying token.

Contract Oracle Decimal Oracle Interval Deviation threshold

ApxETHOracle.sol 8 86400 1%

CsETHOracle.sol N/A N/A N/A

PufETHOracle.sol 8 86400 1%

RsETHOracle.sol 18 86400 0.5%

UnshETHOracle.sol N/A N/A N/A

WeETHOracle.sol 18 86400 0.5%

WstETHOracle.sol* 18 86400 0.5%

* There is no direct WstETH/ETH Oracle Exists and stETH/ETH oracle is used with its redemption rate to the WstETH.

COPYRIGHT 2024. KALOS. all rights reserved



8

• nUSD / snUSD
The nUSD token is minted by collateralizing the LST/LRT tokens to the vault contract. These
minted nUSD tokens can be staked to the snUSD contract. The transferred rewards nUSD
tokens are accumulated to the snUSD contract, and the user can redeem the rewards and
staked tokens after the cooltime has passed.

• USM / esUSM
The USM token is a governance token of Unstable Protocol. The USM token can be
converted to escrowed USM. The from and to address of a transfer of the esUSM is
restricted only to white-listed addresses. The esUSM can be converted back to USM
through a vesting process. There is no reward emission feature in the esUSM contract.

• Communal Farm
The CommunalFarm.sol contract is a fork of Frax's multi-token rewards contract. Users can
stake their ERC20 tokens to earn rewards in multiple tokens. The contract supports
multiple reward tokens with different rates that managers can update. Various entities can
manage the reward rates for their specific tokens.

Notice

1. There are certain functions that allow the contract owners to mint or transfer
tokens. (snUSDBase.rescueTokens onlyConfiguratorOrAdmins, nUSD.mint
onlyVault)

2. The contract owner of the UnstableConfigurator contract is capable of setting
asset-related values, such as oracles and fee rates, which can impact users' assets
utilizing the StakedEthVault contract. Notably, the borrowApr value can be updated
instantly(max apr: 1000%); therefore, users should be cautious of any changes.

3. The vulnerability or other incident effects on the collateral tokens can directly affect
the value of the nUSD token. The maximum damage can be the maximum nUSD
issuance per vault set in the configurator.

4. The collateral token of the StakedEthVault contract is non-based LST/LRT. The usage
of rebasing collateral tokens on the contract is out of the scope.

COPYRIGHT 2024. KALOS. all rights reserved



9

Scope
unstable/
├── vaults
│ └── base
│ └── StakedEthVault.sol
├── token
│ ├── snUSDBase.sol
│ ├── snUSD.sol
│ ├── nUSDDepot.sol
│ ├── nUSD.sol
│ ├── esUSM.sol
│ └── USM.sol
├── oracles
│ ├──WstETHOracle.sol
│ ├──WeETHOracle.sol
│ ├── UnshETHOracle.sol
│ ├── RsETHOracle.sol
│ ├── PufETHOracle.sol
│ ├── PendlePTOracle.sol
│ └── ApxETHOracle.sol
├── interfaces
│ ├── IsnUSD.sol
│ ├── InUSDDefinitions.sol
│ ├── InUSD.sol
│ ├── IesUsmToken.sol
│ ├── IZkOracle.sol
│ ├── IVault.sol
│ ├── IUsmToken.sol
│ ├── IERC20.sol
│ └── IConfigurator.sol
├── farms
│ └── CommunalFarm.sol
└── configuration
└── UnstableConfigurator.sol

COPYRIGHT 2024. KALOS. all rights reserved



10

Access Controls

○ Unstable Configurator
■ Owner : Updates protocol-wide used addresses, including treasury, reward

manager, oracles, nUSD, and vaults, as well as fee-related configurations, collateral
ratios, and market supplies. Have privileges to withdraw and distribute fee tokens
accumulated on the contract.

■ Admin : Sets the pause state of the vault’s nUSD mint/burn call. Distributes fee
tokens accumulated on the contract.

○ Staked ETH Vault
■ Reward Manager : Adds reward tokens and sets the reward duration of each reward

token.

○ Communal Farm
■ Owner : Updates reward-related configurations like duration, multiplier, pause

state, reward tokens, and their managers.
■ Token Manager : Sets reward rates for each reward token.

○ esUSM
■ Owner : Sets the whitelisted addresses to which the esUSM tokens can be

transferred and updates the redeem ratio and duration configurations.

Each privileged account has permissions that can change the crucial part of the system. It
is highly recommended to maintain the private key as securely as possible and strictly
monitor the system state changes.

COPYRIGHT 2024. KALOS. all rights reserved



11

FINDINGS
1. Miscalculation of the user’s collateral ratio in
_checkHealth function.

ID: UP-01 Severity: Critical
Type: Logic Error Difficulty: Low
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue
The vaultSafeCollateralRatio of the configurator is using BPS (10000) notation. However,
the user's collateral ratio is based on 10,000 * 1e18. Therefore, the health check always
returns true.

function _checkHealth(address user) internal view returns(bool) {

uint256 price = getAssetPrice();

if (((depositedAsset[user] * price * 10_000) / getBorrowedOf(user)) / 1e18 <

configurator.getSafeCollateralRatio(address(this))) {

return false;

} else {

return true;

}

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/
vaults/base/StakedEthVault.sol#L285C1-L292C6]

Recommendation

The calculation ((depositedAsset[user] * price * 10_000) / getBorrowedOf(user)) needs to
be divided by 1e18.

Fix Comment

[e577ec3] Applied the division by 1e18.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/commit/e577ec3d5ad41baf882618d9fc1a2a49e3387d7f


12

2. The vaults Storage Variable Not Properly Updating Its
Entries

ID: UP-02 Severity: Low
Type: Logic Error Difficulty: Low
File: contracts/unstable/configuration/UnstableConfigurator.sol

Issue
The vault storage variable in UnstableConfigurator.sol is an array of addresses, but it is
currently pushing 0x0 when a vault is enabled.

function enableVault(address vault) external onlyOwner {

require(!vaultEnabled[vault], "Vault already enabled");

address collateral = IVault(vault).collateralAsset();

require(

zkOracleAddress[collateral] != address(0),

"Set zkOracle before activating vault"

);

require(IVault(vault).getAssetPrice() > 0, "Price oracle not working");

vaultEnabled[vault] = true; //enable vaults

vaults.push(); //add to vaults list

//if collateral is unique

if (collateralEnabled[collateral] == false) {

collaterals.push(collateral); //add to collateral list

collateralEnabled[collateral] = true; //add to lookup

}

emit VaultEnabled(vault);

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/c
onfiguration/UnstableConfigurator.sol#L232-L247]

Recommendation

The address needs to be pushed properly: vaults.push(vault).

Fix Comment

[e577ec3] Fixed the push logic to update address value.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/commit/e577ec3d5ad41baf882618d9fc1a2a49e3387d7f


13

3. The Debtor’s Reward Also Needs to Be Updated When
Liquidation is Called

ID: UP-03 Severity: Medium
Type: Logic Error Difficulty: Low
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue
The liquidation function decreases the debtor's depositedAsset value. Since the reward is
not updated before the liquidation process, the debtor would lose the reward accrued
before the liquidation call.

function liquidation(address provider, address debtor, uint256 assetAmount) external

updateReward(provider) nonReentrant virtual {

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/
vaults/base/StakedEthVault.sol#L138]

Recommendation

Update the debtor's reward information before executing the liquidation logic.

Fix Comment

[e577ec3] The debtor’s reward information is updated before the liquidation logic.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/commit/e577ec3d5ad41baf882618d9fc1a2a49e3387d7f


14

4. The nonReentrant modifier needs to be applied

ID: UP-04 Severity: Tips
Type: Reentrancy Difficulty: N/A
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue
Since several collateral tokens use the proxy pattern, it is safe to use the nonReentrant
modifier on functions that interact with these tokens. When the collateral's logic is
modified to include unexpected features, there is a risk of malicious reentrant calls.
Currently, the only function with this modifier is the getReward function.

Recommendation

We recommend applying the nonReentrant modifier to the following functions:
redemption, liquidation, withdraw, depositAssetToMint, burn, and mint.

Fix Comment

[9b92729] Nonreentrant modifiers are applied to the functions mentioned.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/commits/9b92729d8cc704c2218082bcc42411e27fa84a85


15

5. Incorrect implementation of transfer in the
nUSD.executeFlashloan function

ID: UP-05 Severity: Low
Type: Logic Error Difficulty: N/A
File: contracts/unstable/token/nUSD.sol

Issue
If calling the transfer function inside the executeFlashloan function, the code
_transfer(from: msg.sender, to: msg.sender, amount: amount) will work. A flash loan is a
type of loan where a user borrows assets with no upfront collateral and returns the
borrowed assets within the same blockchain transaction. However, this function works the
user to use their own assets and pay a fee.

function executeFlashloan(uint256 amount, bytes calldata data) external {

transfer(msg.sender, amount);

IFlashBorrower(msg.sender).onFlashLoan(amount, data);

bool success = transferFrom(msg.sender, address(this), amount);

require(success, "Transfer Failed");

uint256 burnShare = getFee(amount);

_burn(msg.sender, burnShare);

emit Flashloaned(msg.sender, amount, burnShare, block.timestamp);

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/t
oken/nUSD.sol#L64-L72]

Recommendation

The patch can be applied as shown in the example below:

function executeFlashloan(uint256 amount, bytes calldata data) external {

_mint(msg.sender, amount);

IFlashBorrower(msg.sender).onFlashLoan(amount, data);

uint256 burnShare = getFee(amount);

_burn(msg.sender, amount + burnShare);

emit Flashloaned(msg.sender, amount, burnShare, block.timestamp);

}

[example]

Fix Comment

[28c60a5] Modified the flash loan logic to mint the loan amount and transfer the fees to
the configurator contract. The maximum amount that can be minted is capped to the total
supply of nUSD.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/commits/28c60a55671bcc924db7b18c92f5908f537ea9e8


16

6. Missing validation 1 - StakedEthVault

ID: UP-06 Severity: Tips
Type: Input Validation Difficulty: N/A
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue
StakedEthVault.addReward function is missing a validation to check if the
_rewardsDuration is greater than 0.

function addReward(address _rewardsToken, uint256 _rewardsDuration) public onlyRewardManager {

require(_rewardsToken != address(collateralAsset) && _rewardsToken != address(nUSD), "Reward

cannot be collateral asset or nUSD");

require(rewardData[_rewardsToken].rewardsDuration == 0, "Reward already exists");

rewardTokens.push(_rewardsToken);

rewardData[_rewardsToken].rewardsDuration = _rewardsDuration;

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/
vaults/base/StakedEthVault.sol#L494-L499]

Fix Comment

[7ac5112] The _rewardsDuration value is validated to be greater than 0.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/files/7ac511223ae9a75080c759ca53a5050b9b44d55b


17

7. Missing validation 2 - emUSM

ID: UP-07 Severity: Tips
Type: Input Validation Difficulty: N/A
File: contracts/unstable/token/esUSM.sol

Issue
emUSM.redeem function is missing a validation to check if the duration is greater than
maxRedeemDuration.

function redeem(uint256 esUSMAmount, uint256 duration) external nonReentrant {

require(esUSMAmount > 0, "redeem: esUSMAmount cannot be null");

require(duration >= minRedeemDuration, "redeem: duration too low");

_transfer(msg.sender, address(this), esUSMAmount);

esUSMBalance storage balance = esUsmBalances[msg.sender];

// get corresponding USM amount

uint256 usmAmount = getUsmByVestingDuration(esUSMAmount, duration);

emit Redeem(msg.sender, esUSMAmount, usmAmount, duration);

// if redeeming is not immediate, go through vesting process

if(duration > 0) {

// add to SBT total

balance.redeemingAmount = balance.redeemingAmount.add(esUSMAmount);

// add redeeming entry

userRedeems[msg.sender].push(RedeemInfo(usmAmount, esUSMAmount,

_currentBlockTimestamp().add(duration)));

} else {

// immediately redeem for USM

_finalizeRedeem(msg.sender, esUSMAmount, usmAmount);

}

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/t
oken/esUSM.sol#L205-L227]

Recommendation

patch-a: if (duration > maxRedeemDuration) duration = maxRedeemDuration;

patch-b: require(duration <= maxRedeemDuration, "redeem: duration too high");

Fix Comment

[7ac5112] The duration value is validated to be less than maxRedeemDuration.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/files/7ac511223ae9a75080c759ca53a5050b9b44d55b


18

8. Missing validation 3 - StakedEthVault

ID: UP-08 Severity: Tips
Type: Input Validation Difficulty: N/A
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue
StakedEthVault.notifyRewardAmount function is missing a validation to check
_rewardsToken is enabled. The code(rewardData[_rewardsToken].rewardRate = reward

/ rewardData[_rewardsToken].rewardsDuration;) causes a zero division error, so it's not
cause problems, but it is advisable to add validation to ensure _rewardsToken is enabled.

function notifyRewardAmount(address _rewardsToken, uint256 reward) external onlyRewardManager

updateReward(address(0)) {

IERC20(_rewardsToken).safeTransferFrom(msg.sender, address(this), reward);

if (block.timestamp >= rewardData[_rewardsToken].periodFinish) {

rewardData[_rewardsToken].rewardRate = reward / rewardData[_rewardsToken].rewardsDuration;

} else {

uint256 remaining = rewardData[_rewardsToken].periodFinish - block.timestamp;

uint256 leftover = remaining * rewardData[_rewardsToken].rewardRate;

rewardData[_rewardsToken].rewardRate = (reward + leftover) /

rewardData[_rewardsToken].rewardsDuration;

}

rewardData[_rewardsToken].lastUpdateTime = block.timestamp;

rewardData[_rewardsToken].periodFinish = block.timestamp +

rewardData[_rewardsToken].rewardsDuration;

emit RewardAdded(reward);

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/
vaults/base/StakedEthVault.sol#L501-L513]

Fix Comment

[89abeb1] The validation logic of whether the rewardsDuration is 0 is applied to the
function.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/commits/89abeb1aac628551783034e1ee0bf9962d4c453c


19

9. Incorrect implementation in UnstableConfigurator

ID: UP-09 Severity: Low
Type: Logic Error Difficulty: N/A
File: contracts/unstable/configuration/UnstableConfigurator.sol

Issue
1. Unreachable condition

function getRedemptionFee(address vault, uint256 collateralRatio) external view returns(uint256

providerFee, uint256 protocolFee) {

require(vaultEnabled[vault], "Vault not enabled");

require(collateralRatio >= 100_00, "Cannot redeem when collateral ratio is below 100%");

RedemptionConfig memory config = getRedemptionConfig(vault);

require(config.enabled, "Redemption not enabled");

require(collateralRatio <= config.maxCollateralRatio, "Cannot redeem collateral ratio above

max"); // <- (0)

...

else if(collateralRatio > config.maxCollateralRatio) { // <- (1)

totalFee = config.baseFee * config.maxMultiplier / 100_00;

providerFee = totalFee * providerShare / 100_00;

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/
unstable/configuration/UnstableConfigurator.sol#L470-L496]

(1) condition is unreachable because the require statement (0) already ensures that
collateralRatio is within the maximum limit.

2. Hardcoded provider share
Although providerShare is defined within RedemptionConfig, the function uses a
hardcoded value instead.

struct RedemptionConfig {

bool enabled; //whether a vault can redeem

uint16 baseFee; // base fee for redemption

uint16 maxMultiplier; // fee for redemption

uint16 maxCollateralRatio; // collateral ratio for max fee multiplier

uint16 providerShare; // share of redemption fee that goes to provider

}

...

function getRedemptionFee(address vault, uint256 collateralRatio) external view returns(uint256

providerFee, uint256 protocolFee) {

...

uint16 providerShare = 80_00; //80% of redemption fee goes to provider

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/
unstable/configuration/UnstableConfigurator.sol#L470-L496]

COPYRIGHT 2024. KALOS. all rights reserved



20

3. Misconfiguration leading to underflow
The maxMultiplier is intended to be 3% (3_00) but is set to 3, which is inconsistent
and leads to an underflow.

constructor(address _etherOracle) {

flashloanFee = 500; //500 bps = 5%

defaultSafeCollateralRatio = 150_00; //15000 bps = 150%

defaultBadCollateralRatioDistance = 15_00; //1500 bps = 15%

defaultOriginationFee = OriginationFeeConfig(0, 1000); //0% at 0% utilization, 10% at 100%

utilization

defaultKeeperReward = 500; //500 bps = 5% reward

defaultDepegThreshold = 300; //300 bps = 3% depeg

defaultRedemptionConfig = RedemptionConfig(true, 100, 3, 200_00, 75_00); //100 bp fee, 3x max

multiplier, 200% cr for max multiplier, 75% fee to provider

[https://github.com/LSDfi-cafe/unstable-protocol/blob/main/contracts/unstable/configuration/UnstableConfigurat
or.sol#L117-L124]

And the getRedemptionFee function calculation must be adjusted:

// origin

totalFee = config.baseFee * (100_00 + (config.maxMultiplier-100_00) *

(collateralRatio-safeCollateralRatio) / (config.maxCollateralRatio -safeCollateralRatio)) / 100_00;

// patch example

totalFee = config.baseFee * (100_00 + (config.maxMultiplier) * (collateralRatio - safeCollateralRatio)

/ (config.maxCollateralRatio - safeCollateralRatio)) / 100_00;

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/
unstable/configuration/UnstableConfigurator.sol#L499]

Fix Comment

[e8da6d4]
1. Removed unreachable logic.
2. The hardcoded providerShare value is replaced with the config.providerShare.
3. The misconfigured defaultRedemptionConfig value is corrected.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/files/e8da6d4559cc1a068857c39636639615098b4260


21

10. Shared rewardManager role across multiple vaults

ID: UP-10 Severity: Low
Type: Access & Privilege Control Difficulty: High
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue
The RewardManager contract, managed by the UnstableConfigurator contract, is designed
to handle rewards and has authority over withdrawing ERC20 tokens from multiple
StakedEthVault contracts. This shared authority introduces several potential issues,
particularly if the RewardManager authority is extended to third parties.

modifier onlyRewardManager() {

require(configurator.isRewardManager(msg.sender), "Not reward manager");

_;

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/
vaults/base/StakedEthVault.sol#L544-L547]

mapping(address => bool) public isRewardManager; //user that can manage rewards

...

function setRewardManager(address _rewardManager) external onlyOwner {

require(_rewardManager != address(0), "Reward manager cannot be the zero address");

if (!isRewardManager[_rewardManager]) {

isRewardManager[_rewardManager] = true;

emit RewardManagerSet(_rewardManager);

}

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/c
onfiguration/UnstableConfigurator.sol#L156-L162]

Recommendation

Independent RewardManager role for each StakedEthVault to ensure isolated and secure
reward management.

Comment by core contributors

This is their intentional implementation. The rewards manager role is a low-risk role, and a
patch will not be applied to avoid over-complication.

COPYRIGHT 2024. KALOS. all rights reserved



22

11. Incoherent Basis Points notation.

ID: UP-11 Severity: Tips
Type: Off-standard Difficulty: N/A
File: contracts/unstable/vaults/base/StakedEthVault.sol

contracts/unstable/configuration/UnstableConfigurator.sol

Issue

The large number notation, some numbers are grouped into two digits (e.g., 10_00)
instead of the conventional three-digit grouping (e.g., 1,000 or 100_000). This can cause
confusion and reduce the readability of the data presented.

Additionally, using a Basis Points (BPS) variable name for 100_000 can improve readability.

function setRedemptionFee(

address vault,

bool enabled,

uint16 baseFee,

uint16 maxMultiplier,

uint16 maxCollateralRatio,

uint16 providerShare

) external onlyOwner {

require(baseFee <= 10_00, "Max Redemption Fee is 10%");

require(maxMultiplier <= 100_000, "Max multiplier is 10x");

require(

maxCollateralRatio >= 150_00 && maxCollateralRatio <= 300_00,

"Cr for max multiplier must be 150%-300%"

);

require(

providerShare >= 50_00 && providerShare <= 100_00,

"Provider share must be 50%-100%"

);

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/c
onfiguration/UnstableConfigurator.sol#L351]

Recommendation

Ensure consistency in number notation and consider using BPS notation.

Fix Comment

[7ac5112] The number notation is updated to be coherent with each other.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/files/7ac511223ae9a75080c759ca53a5050b9b44d55b


23

12. Borrowed fee calculation doesn't retrospectively
reflect borrowApr updates.

ID: UP-12 Severity: High
Type: Logic Error Difficulty: Medium
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue
When calculating the borrowed fee in StakedEthVault, the formula used is "seconds since
the user's last fee update * borrowApr". If the borrowApr changes before the updateFee
function is called, the fee calculation does not retroactively include the seconds that have
passed since the last fee update. Instead, the entire fee calculation is updated with the
new borrowApr value.

function _newFee(address user) internal view returns (uint256) {

uint256 secondsInYear = 86_400 * 365;

uint256 secondsSinceLastFee = block.timestamp - feeUpdatedAt[user];

return borrowed[user] * configurator.borrowApr(address(this)) * secondsSinceLastFee /

secondsInYear / 10_000;

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/
vaults/base/StakedEthVault.sol#L301-L305]

This issue leads to an inaccurate fee calculation, as it fails to account for the time passed
with the previous borrowApr, potentially resulting in unexpected fees for users.

Recommendation

contract UnstableConfigurator is Ownable {

// ...

function setBorrowApr(address vault, uint16 newApr) external onlyOwner {

require(newApr <= 1000_00, "Borrow APR cannot exceed 1000%");

StakedEthVault(vault).updateFeeByConfigurator();

borrowApr[vault] = newApr;

emit BorrowAprChanged(vault, newApr);

}

}

contract StakedEthVault is ReentrancyGuard {

// ...

uint256 lastFeeUpdateAt;

uint256 accumulatedFees;

uint256 constant secondsInYear = 86_400 * 365;

constructor(address _collateral, address _configurator) {

COPYRIGHT 2024. KALOS. all rights reserved



24

// ...

lastFeeUpdateAt = block.timestamp;

}

function updateFeeByConfigurator() public {

_updateFee(address(0));

}

function _updateFee(address user) internal {

if (block.timestamp > lastFeeUpdateAt) {

uint256 secondsSinceLastFee = block.timestamp - lastFeeUpdateAt;

accumulatedFees += configurator.borrowApr(address(this)) * secondsSinceLastFee;

lastFeeUpdateAt = block.timestamp;

}

if (accumulatedFees > feeAccumulatedUser[user]) {

feeStored[user] += _newFee(user);

feeAccumulatedUser[user] = accumulatedFees;

}

}

function _newFee(address user, uint256 _accumulatedFees) internal view returns (uint256) {

uint256 userFee = _accumulatedFees - feeAccumulatedUser[user];

return borrowed[user] * userFee / secondsInYear / 10_000;

}

function _newFee(address user) internal view returns (uint256) {

return _newFee(user, accumulatedFees);

}

function getBorrowedOf(address user) public view returns (uint256) {

uint256 secondsSinceLastFee = block.timestamp - lastFeeUpdateAt;

uint256 _accumulatedFees = accumulatedFees + configurator.borrowApr(address(this)) *

secondsSinceLastFee;

return borrowed[user] + feeStored[user] + _newFee(user, _accumulatedFees);

}

[example]

Comment by core contributors

They acknowledge the issue and have plans to address it with a future patch.

COPYRIGHT 2024. KALOS. all rights reserved



25

13. Front-run to cause a denial of service (DoS) when
snUSD is deployed.

ID: UP-13 Severity: Tips
Type: Logic Error Difficulty: Low
File: contracts/unstable/token/snUSDBase.sol

Issue

The _checkMinShares() function ensures that after user deposits and withdrawals, the
contract maintains a minimum of 0 or at least 1e18 shares.

/// @notice Minimum non-zero shares amount to prevent donation attack

uint256 private constant MIN_SHARES = 1 ether;

function _checkMinShares() internal view {

uint256 _totalSupply = totalSupply();

require(_totalSupply >= MIN_SHARES || _totalSupply == 0, "Min shares violation");

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/t
oken/snUSDBase.sol#L133]

However, this solution creates a new vulnerability. Assume a scenario where a malicious
user donates nUSD to a newly created snUSD pool with a totalSupply of 0. If the malicious
user donates 1 nUSD (1e18) token to the pool, the calculation for issuing MIN_SHARES
(1e18 shares) would require a significant amount of nUSD due to the way the shares are
calculated.

assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding) > MIN_SHARES
-> assets * (10 ** _decimalsOffset()) / (totalAssets() + 1) > MIN_SHARES
-> assets * (10 ** 0) / (1e18(donated assets) + 1) > 1e18
result: require(assets > 1e18 * (1e18 + 1));

function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns

(uint256) {

return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);

}

[ERC4626.sol]

COPYRIGHT 2024. KALOS. all rights reserved



26

Recommendation

When Deploying the snUSD contract, immediately spend 1 nUSD (1e18) to mint 1 snUSD

Comment by core contributors

They are aware of the issues associated with a new erc4626 vault and agree to initialize it
with some nUSD before opening up the protocol/contracts to the public. If this issue
occurred during the first deployment, they plan to re-deploy.

COPYRIGHT 2024. KALOS. all rights reserved



27

14. When the cooldown is adjusted, users are still required
to adhere to the previously established duration.

ID: UP-14 Severity: Low
Type: Logic Error Difficulty: Low
File: contracts/unstable/token/snUSD.sol

Issue

The snUSD contract enforces cooldown periods before users can unstake their funds if the
cooldown is on. If the cooldown is turned off by the admin, users can withdraw their funds
immediately.

However, users who initiated a withdrawal under the cooldown period cannot withdraw
immediately, even if the cooldown is turned off because their funds are still locked.

This creates an unfair situation, as they must wait unnecessarily while others can withdraw
instantly.

function unstake(address receiver) external {

UserCooldown storage userCooldown = cooldowns[msg.sender];

uint256 assets = userCooldown.underlyingAmount;

require(block.timestamp >= userCooldown.cooldownEnd, "Cooldown not finished");

userCooldown.cooldownEnd = 0;

userCooldown.underlyingAmount = 0;

depot.withdraw(receiver, assets);

}

function cooldownAssets(uint256 assets, address owner) external ensureCooldownOn returns (uint256) {

require(assets <= maxWithdraw(owner), "Excessive withdraw amount");

uint256 shares = previewWithdraw(assets);

cooldowns[owner].cooldownEnd = uint104(block.timestamp) + cooldownDuration;

cooldowns[owner].underlyingAmount += assets;

_withdraw(_msgSender(), address(depot), owner, assets, shares);

return shares;

}

function cooldownShares(uint256 shares, address owner) external ensureCooldownOn returns (uint256) {

require(shares <= maxRedeem(owner), "Excessive redeem amount");

uint256 assets = previewRedeem(shares);

COPYRIGHT 2024. KALOS. all rights reserved



28

cooldowns[owner].cooldownEnd = uint104(block.timestamp) + cooldownDuration;

cooldowns[owner].underlyingAmount += assets;

_withdraw(_msgSender(), address(depot), owner, assets, shares);

return assets;

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/t
oken/snUSD.sol#L66-L108]

Recommendation

When the cooldown is turned off, all users should have immediate access to their funds,
including those with previous withdrawal requests under the cooldown.

Comment by core contributors

In any case, if a user chooses to initiate a cooldown given the information they had at the
time, it's not really "unfair" if the cooldown is later disabled, as they are unstaked based on
the information and logical configuration at that time.

COPYRIGHT 2024. KALOS. all rights reserved



29

15. The pause state is not accounted for when
withdrawing.

ID: UP-15 Severity: Medium
Type: Access & Privilege Control Difficulty: Low
File: contracts/unstable/farms/CommunalFarm.sol

Issue

The withdrawLockedMultiple and withdrawLockedAll functions do not consider the
withdrawalsPaused state variable, so users can withdraw even when the admin pauses the
withdrawal process.

function withdrawLocked(bytes32 kek_id) nonReentrant public {

require(withdrawalsPaused == false, "Withdrawals paused");

_withdrawLocked(msg.sender, msg.sender, kek_id, true);

}

function withdrawLockedMultiple(bytes32[] memory kek_ids) nonReentrant public {

_getReward(msg.sender, msg.sender);

for (uint256 i = 0; i < kek_ids.length; i++){

_withdrawLocked(msg.sender, msg.sender, kek_ids[i], false); //don't collect rewards each

iteration

}

}

function withdrawLockedAll(address user) nonReentrant public {

_getReward(msg.sender, msg.sender);

LockedStake[] memory locks = lockedStakes[user];

for(uint256 i = 0; i < locks.length; i++) {

if(locks[i].liquidity > 0 && block.timestamp >= locks[i].ending_timestamp){

_withdrawLocked(msg.sender, msg.sender, locks[i].kek_id, false);

}

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/f
arms/CommunalFarm.sol#L408-L428]

Recommendation

The withdrawalsPaused state variable should be checked before the withdrawal logic
execution.

Fix Comment

[21d1c38] Pause state checking logic is added to the withdrawal functions.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/LSDfi-cafe/unstable-protocol/pull/28/files/21d1c38f4b89caff561585a81e231e651fff6f2f


30

16. isDepegged function only checks for marketRate lower
than redemptionRate

ID: UP-16 Severity: Tips
Type: Input Validation Difficulty: N/A
File: contracts/unstable/vaults/base/StakedEthVault.sol

Issue

The isDepegged function is designed to validate if a token is in a depegged state by
checking if the market rate is lower than the redemption rate. However, the function
currently only checks for scenarios where the market rate is less than the redemption rate.

function isDepegged() public view returns (bool) {

uint256 marketRate = getMarketRate();

if(marketRate == 0) {

return false; //if market rate oracle is zero, presume market rate is not configured and

take no action

}

uint256 redemptionRate = getRedemptionRate();

uint256 minMarketRate = redemptionRate * (10_000 -

configurator.getDepegThreshold(address(this))) / 10_000;

return marketRate < minMarketRate;

}

[https://github.com/LSDfi-cafe/unstable-protocol/blob/7159949c93b45ad86b4e79fb01472960799dab13/contracts/unstable/
vaults/base/StakedEthVault.sol#L352-L360]

Recommendation

Modify the isDepegged function to both scenarios where the market rate is significantly
lower or higher than the redemption rate.

Comment by core contributors

This is intentional and not an issue. The rate actually used for internal calculations is the
minimum of the marketRate and the redemptionRate - that is, in cases when the
marketRate is significantly higher than the redemptionRate the price actually used is
capped at the redemptionRate. Therefore, this scenario doesn't pose an issue.

COPYRIGHT 2024. KALOS. all rights reserved



31

DISCLAIMER
This assessment does not offer any warranties regarding the discovery of all potential
issues within its scope; in essence, the evaluation results do not ensure the absence of
subsequent issues. KALOS also cannot guarantee the performance of any code added to
the project after the version reviewed during our assessment.
KALOS provides recommended solutions for each finding, offering guidance on how an
issue may be addressed. It is important to note that while these recommendations
convey ideas for resolution, they may not constitute tested or functional code. We
encourage partners to view these recommendations as a starting point for discussion,
with KALOS available to offer additional guidance and advice as required.Furthermore,
the contents of this assessment report are intended solely for informational purposes
and should not be construed as legal, tax, investment, or financial advice. KALOS neither
solicits nor endorses projects based on the information contained herein.

COPYRIGHT 2024. KALOS. all rights reserved



32

Appendix. A

Severity Level

CRITICAL Must be addressed as a vulnerability that has the potential to seize or
freeze substantial sums of money.

HIGH Has to be fixed since it has the potential to deny users compensation or
momentarily freeze assets.

MEDIUM Vulnerabilities that could halt services, such as DoS and Out-of-Gas,
need to be addressed.

LOW Issues that do not comply with standards or return incorrect values

TIPS Tips that makes the code more usable or efficient when modified

Difficulty Level

Low Medium High

Privilege anyone Miner/Block Proposer Admin/Owner

Capital needed Small or none Gas fee or volatile as
price change

More than exploited
amount

Probability 100% Depend on environment Hard as mining difficulty

COPYRIGHT 2024. KALOS. all rights reserved



33

Vulnerability Category

Arithmetic
• Integer under/overflow vulnerability
• floating point and rounding accuracy

Access & Privilege
Control

• Manager functions for emergency handle
• Crucial function and data access
• Count of calling important task, contract state change, intentional task delay

Denial of Service
• Unexpected revert handling
• Gas limit excess due to unpredictable implementation

Miner Manipulation
• Dependency on the block number or timestamp.
• Frontrunning

Reentrancy
•Proper use of Check-Effect-Interact pattern.
•Prevention of state change after external call
• Error handling and logging.

Low-level Call
• Code injection using delegatecall
• Inappropriate use of assembly code

Off-standard • Deviate from standards that can be an obstacle of interoperability.

Input Validation • Lack of validation on inputs.

Logic Error/Bug • Unintended execution leads to error.

Documentation •Coherency between the documented spec and implementation

Visibility • Variable and function visibility setting

Incorrect Interface • Contract interface is properly implemented on code.

COPYRIGHT 2024. KALOS. all rights reserved



34

End of Document

COPYRIGHT 2024. KALOS. all rights reserved


